Differential Forms on Noncommutative Spaces
نویسنده
چکیده
This paper is intended as an introduction to noncommutative geometry for readers with some knowledge of abstract algebra and differential geometry. We show how to extend the theory of differential forms to the “noncommutative spaces” studied in noncommutative geometry. We formulate and prove the Hochschild-Kostant-Rosenberg theorem and an extension of this result involving the Connes differential.
منابع مشابه
Two-forms and Noncommutative Hamiltonian dynamics
Abstract. In this paper we extend the standard differential geometric theory of Hamiltonian dynamics to noncommutative spaces, beginning with symplectic forms. Derivations on the algebra are used instead of vector fields, and interior products and Lie derivatives with respect to derivations are discussed. Then the Poisson bracket of certain algebra elements can be defined by a choice of closed ...
متن کاملWeighted composition operators on measurable differential form spaces
In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.
متن کاملThe Serre spectral sequence of a noncommutative fibration for de Rham cohomology
For differential calculi on noncommutative algebras, we construct a twisted de Rham cohomology using flat connections on modules. This has properties similar, in some respects, to sheaf cohomology on topological spaces. We also discuss generalised mapping properties of these theories, and relations of these properties to corings. Using this, we give conditions for the Serre spectral sequence to...
متن کاملar X iv : 0 81 0 . 23 57 v 1 [ m at h - ph ] 1 4 O ct 2 00 8 PROJECTIVE MODULE DESCRIPTION OF EMBEDDED NONCOMMUTATIVE SPACES
Noncommutative differential geometry over the Moyal algebra is developed following an algebraic approach. It is then applied to investigate embedded noncommutative spaces. We explicitly construct the projective modules corresponding to the tangent bundles of the noncommutative spaces, and recover from this algebraic formulation the metric, Levi-Civita connection and related curvature introduced...
متن کاملNoncommutative differential calculus for Moyal subalgebras
We build a differential calculus for subalgebras of the Moyal algebra on R4 starting from a redundant differential calculus on the Moyal algebra, which is suitable for reduction. In some cases we find a frame of 1-forms which allows to realize the complex of forms as a tensor product of the noncommutative subalgebras with the external algebra Λ. MSC: 46L87;
متن کامل